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  ABSTRACT 

Prediction modeling of air quality in Geiranger 

Nature based tourist destinations in the Møre region experience high transport loads 

over short time periods in the tourist season, with high pollution levels as a 

consequence. Geiranger and other Norwegian tourist destinations may experience 

high levels of particle matter (PM), nitrogen oxides (NOx), sulfur oxides (SOx) as well 

as other pollutants during peak season, which may not only cause adverse 

environmental effects but also be harmful to human health.  

The primary objective of the pilot project “Big Data analysis of Air Quality in Geiranger” 

has been to build air quality prediction models to improve the knowledge about air 

quality and its variability linked to transportation and meteorological conditions in 

Geiranger. Prediction models may later be used to evaluate the effect of transportation 

measures on air quality. In the project, time series data for air quality, transport and 

meteorological conditions in Geiranger over a four year period has been analyzed and 

visualized.  

This report summarizes findings from initial analyses of air quality, traffic and 

meteorological data for the Geiranger area in the period 2015-2018. A combination of 

conventional statistics and machine learning methods have been applied to better 

explore relationships between these conditions in Geiranger.  

The pilot project is funded by Regionale Forskningsfond (RFF) Midt-Norge and has 

been conducted during spring and summer 2019. The project has been managed by 

NTNU in Ålesund, with Stranda Hamnevesen as problem owner and project partner, 

and Bonn University as project partner.  
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Sammendrag 
Naturbaserte turistdestinasjoner i Møreregionen opplever ofte stor transportbelastning over 

korte tidsrom, med høye forurensningsnivåer som konsekvens. Geirangerfjorden og andre 

norske turistdestinasjoner kan i høysesong oppleve forhøyede nivåer av blant annet svevestøv 

og nitrogendioksid med potensielt helseskadelige effekter.  

Pilotprosjektet «Big data analyse av miljøkvalitet i Geiranger» har som målsetting å utvikle ny 

kunnskap om sammenhenger mellom luftkvalitet, meteorologiske forhold og transportaktivitet 

i Geiranger gjennom å bygge prediksjonsmodeller for luftkvalitet. Slike modeller vil kunne 

bidra til å analysere effekten av ulike logistiske og teknologiske tiltak i transportsystemet på 

luftkvalitet i området. I prosjektet har tidsseriedata for luftkvalitet, transport og meteorologiske 

forhold over en fireårsperiode blitt analysert og visualisert.  

Denne rapporten oppsummerer funn fra analyser av data for luftkvalitet, meteorologiske forhold 

og transportaktivitet i Geiranger i perioden 2015-2018. En kombinasjon av konvensjonell 

statistikk og maskinlæring har blitt brukt for å analysere data.  

Fra disse preliminære prediksjonsmodellene kan vi konkludere følgende:  

1. Prediksjonsmodellene følger trendene i luftforurensingsnivåer men klarer ikke å 

predikere topper for konsentrasjonsnivåer av luftforurensning 

2. NO2 predikeres mer nøyaktig enn PM1. 

3. Data om meteorologiske forhold øker nøyaktigheten i prediksjonsmodellene 

4. Det er ikke mulig å skille bidrag til luftforurensningsnivåer fra land- eller 

sjøtransportaktivitet med prediksjonsmodellene 

Videre forskning burde se nærmere på hvordan bidrag fra sjø- og landtransport kan skilles i 

disse modellene, hvilken rolle meteorologiske forhold har på luftkvalitet, samt utvikle en bedre 

forståelse for akkumulering av PM over tid. Bedre oppløsning på data vil muliggjøre slike 

analyser. Bedre prediksjonsmodeller er også nødvendig for å bidra til beslutningsstøtte for å 

vurdere ulike forbedringstiltak i ulike scenarier. En annen nyttig utvikling vil også være å koble 

prediksjonsmodeller til visualiseringsverktøy for å skape brukervennlige grensesnitt for aktører 

involvert i transportplanlegging.  
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Summary 
Nature based tourist destinations in the Møre region experience high transport loads over short 

time periods in the tourist season, with high pollution levels as a consequence. Geiranger and 

other Norwegian tourist destinations may experience high levels of particle matter (PM), 

nitrogen oxides (NOx), sulfur oxides (SOx) as well as other pollutants during peak season, which 

may not only cause adverse environmental effects but also be harmful to human health.  

The pilot project “Big Data analysis of Air Quality in Geiranger” aims to improve the 

knowledge about air quality and its variability linked to transportation and meteorological 

conditions in Geiranger through building air quality prediction models. Such models may be 

used to analyze the effect om air quality from implementing technological and logistical 

measures in the transportation system. In the project, time series data for air quality, transport 

and meteorological conditions in Geiranger over a four year period has been analyzed and 

visualized.  

This report summarizes findings from initial analyses of air quality, traffic and meteorological 

data for the Geiranger area in the period 2015-2018. A combination of conventional statistics 

and machine learning methods have been applied to better explore relationships between these 

conditions in Geiranger.  

From the preliminary prediction models, we may conclude that: 

1. Prediction models follow the trends of air pollution levels but do not predict the 

magnitude of concentrations peaks. 

2. NO2 is more accurately predicted than PM1. 

3. Data on meteorological conditions increase accuracy in prediction models.  

4. It is not possible to attribute air quality levels to land- or sea traffic activity with the 

current prediction models 

Future research efforts in this direction should look more closely into clarifying the contribution 

from sea- and land traffic, the mediating role of meteorological conditions and the accumulation 

effects of PM over time. Improved resolution of data is a means to this end. Prediction model 

development is also necessary to better facilitate decision support for relevant measure 

evaluations across future scenarios. Another useful extension could also be to integrate models 

in visualization tools to provide a user-friendly interface and facilitate decision making among 

transportation planners.   
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1. Introduction 

 

Nature based tourist destinations in the Møre region experience high transport loads over short 

time periods in the tourist season, with high pollution levels as a consequence. Geiranger and 

other Norwegian tourist destinations may experience high levels of particle matter (PM), 

nitrogen oxides (NOx), sulfur oxides (SOx) as well as other pollutants during peak season [1-3], 

which may not only cause adverse environmental effects but also be harmful to human health 

[4]. While the transport load and air pollution levels are high and growing, destination image 

and visitor experiences are also at risk of degradation. From the perspective of planners, 

efficient measures need to be identified and implemented [5]. This requires knowledge about 

the dynamic relationship between air quality, transportation and meteorological conditions.  

The pilot project “Big Data analysis of Air Quality in Geiranger” aims to improve the 

knowledge about air quality and its variability linked to transportation and meteorological 

conditions in Geiranger through building air quality prediction models. In the project, time 

series data for air quality, transport and meteorological conditions in Geiranger over a four year 

period has been analyzed and visualized.  

The pilot project is funded by Regionale Forskningsfond (RFF) Midt-Norge and has been 

conducted during spring and summer 2019. The project has been managed by NTNU in 

Ålesund, with Stranda Hamnevesen as problem owner and project partner, and Bonn University 

as project partner.  
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2. Project structure and data 

 

2.1. Project work process 

The overall work process of the pilot project is divided into four main steps as shown in Figure 

1. Initially, data was collected (step 1) and processed to combine in a project database (step 2). 

The data was then analyzed (step 3) using Pearson’s correlation coefficient and further used 

along with the deep learning technique Long short-term memory (LSTM) to build prediction 

models. The data analysis methods in step 3 are described in appendix I. In addition to project 

reporting (step 4), the experiences from the pilot is used to develop new projects in the future 

utilizing data and machine learning techniques for decision support.   

 

 

Figure 1: Overall work process of the pilot project 
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2.2. Project data 

All the data has time series format with the resolution of one hour. Data observations are either 

the aggregate (count) or mean value of selected variables. The analysis window for this pilot 

follows the time period for the accessed air quality dataset, which starts on 04.06.2015 at 17.00 

and ends on  14.09.2018 at 10.00 AM. This totals to 28 746 hours of observations.   

 

Table 1 lists the datasets used in the project.  

 

Table 1: List of datasets used in the data analysis project 

 Air quality Meteorological Land traffic Sea traffic 

Origin  Bonn University Bonn University NPRA STPA, Sea-web 

Measurement 

points 

3 1 3 1 

Variables PM 

NOx 

Air pressure 

Precipitation 

Wind direction 

Wind speed 

Relative air 

humidity 

Air temperature 

Global radiation 

Vehicle size 

Vehicle direction 

GT total (size) 

PAX total 

(capacity) 

Number of 

vessels 

Installed KW for 

tier 0-3 engines 

 

Air quality and meteorological data was obtained from Bonn University. This data has initially 

been collected in the Geiranger Air quality monitoring program and covers air concentrations 

of particulate matter (PM), nitrogen oxides (NOx), sulfur oxides (SOx) and most recently, noise. 

This data pilot focus on PM and NOx pollution levels in Geiranger.  

The air quality data has been collected from three different measurement stations in the 

Geiranger area, as shown in Figure 2. The meteorological data has only been collected at the 

station in Geiranger centre (the leftmost purple point on the figure).  

Land traffic data has been collected from the Norwegian Public Road Authorities (NPRA) 

database for traffic registration points in the area. The yellow circles on Figure 2 shows the 

location of traffic registration stations. This data is a record of cars passing the station separate 

directions over the course of an hour. The data extracted from the database follows the analysis 

period (2015-2018).  

Sea traffic data was obtained from Stranda Port Authorities (STPA) records for ships calling to 

port in Geiranger. The data was supplemented with database information from the Sea-web 

Ships database to provide more details and technical specifications about the vessels. A time 

series dataset was then manually created for the analysis period (2015-2018).  
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Figure 2: Location and name of measurement stations for land traffic and air quality data 
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3. Results from Geiranger air quality data analysis 

3.1. Historical air quality in Geiranger 
University of Bonn and Stiftinga Geirangerfjorden Verdsarv has since 2015 collected data on 

air quality and meteorological conditions within the Geiranger Air Quality Monitoring 

Program. Results from these measurements have been published in annual reports [see 1, 3] 

that comment on the state of air quality in Geiranger. The program monitors particles, gases 

and since 2017 also sound levels in the World Heritage Area. In the following sections, we 

analyze air quality in Geiranger for the entire period 2015-2018, focusing on particulate matter 

(PM) and NOx gases.  

Particulate Matter (PM) 

PM is a mixture of solid and liquid particles suspended in the air. Constituents of PM may be 

sulfates, nitrates, ammonium and other inorganic ions. Allergens and microbial compounds are 

also found in PM [6]. PM is separated into different fractions based on the particle diameter. 

Particles with a diameter of less than 2.5 micrometers (µm) is classified as PM2.5 (also called 

fine PM), while particles with a diameter less than 10 µm is classified as PM10 and so on.  

PM may be emitted directly into the air (primary PM) or form in the atmosphere from gases 

(secondary PM). The origins of PM may be combustion engines, solid fuel combustion for 

household warming as well as other industrial activities. PM may also originate from road 

traffic through pavement erosion and abrasion of brakes and tires as well as road salt and sand 

[6, 7]. Exhaust emissions from combustion engines mostly contributes to fine PM (PM2.5) 

while other particles from road traffic contributes to the coarser part of PM10 (PM2.5-PM10) 

[7]. Formation of secondary PM happens through chemical reactions of gaseous pollutants such 

as nitrogen oxides and sulfur dioxide.  

PM may result in both short- and long-term adverse health effects. Both PM10 and PM2.5 

contain particles that may be inhaled and penetrate the respiratory system. Effects include 

aggravation of asthma and other respiratory symptoms as well as lung cancer [6].  

PM pollution is regulated in the Norwegian Pollution Regulation where maximum annual 

concentrations are defined for PM2.5 and PM10, as shown in Table 2. For PM10, a maximum 

daily concentration is also defined. These levels are legally binding.  

In addition to regulation, the Norwegian Institute of Public Health and the Norwegian 

Environment Agency publish Air Quality Criteria for several pollutants. These are stricter than 

levels from the Pollution Regulation, but are not legally binding.   

Table 2: Air quality threshold levels for PM2.5 and PM10 

 Averaging  

period 

Pollution Regulation [8] Air Quality Criteria [9] 

PM2.5 

[μg/m³] 

Day  15 

Year 15 8 

PM10 

[μg/m³] 

Day 50, 30 times per year 30 

Year 25 20 
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Figure 3 shows hourly average for all PM fractions measured at the Geiranger station over the 

four-year period. As the plot shows, a primary contributor to PM in Geiranger is PM1, i.e. 

particles with a diameter of less than 1 µm, with some peaks registered for PM in the range 4-

10 µm and 10-100 µm.  

 

Figure 3: Hourly average concentrations of PM in Geiranger 2015-2018 

Furthermore, daily and annual averages for the monitoring period shows that Pollution 

Regulation air quality levels have not been exceeded. However, the Air Quality Criteria have 

been exceeded multiple times. For PM2.5, the daily average of 15 μg/m³ have been exceeded 

mainly between May to September, i.e. the tourist season, as shown in Figure 5. Higher values 

were also recorded during spring 2018. Annual average concentrations of PM2.5 has not 

exceeded the Air Quality Criteria at 8 μg/m³ for the years 2016-2017, as shown in Figure 4.  

For PM10, Figure 6 shows that the daily average limit of 30 μg/m³ was exceeded mainly during 

the tourist season in 2016 and spring of 2018. As seen in Figure 4, no exceedance of the annual 

average limit at 20 μg/m³ PM10 has been recorded during the monitoring period.  

 

Figure 4: Annual average concentrations for PM2.5 (left) and PM10 (right) at the Geiranger measurement station. 
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Figure 5: Daily average concentrations of PM2.5 at three measurement stations in Geiranger 2015-2018. The red line shows Air Quality Criteria levels. 
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Figure 6: Daily average concentrations of PM10 at three measurement stations in Geiranger 2015-2018. The red line shows Air Quality Criteria levels.  
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Nitrogen Oxides (NOx) 

NOx gases consist of nitric oxide (NO) and nitrogen dioxide (NO2). These gases are formed in 

combustion processes under high temperatures. An important source of NO2 is diesel engine 

combustion, while other origins include industrial activities and waste incineration.  

Adverse health effects from NO2 exposure include respiratory symptoms, development of asthma 

and increased susceptibility of respiratory infections. Children, elderly people and people with 

asthma are at greater risk for the health effects of NO2. 

Both Pollution Regulation levels and Air Quality Criteria for NO2 are defined, as shown in Table 3. 

For the studied years, the annual threshold of 40 [μg/m³] has not been exceeded. As plots in Figure 

5 shows, hourly average NO2 exceeded the threshold of 100 μg/m³ during July 2018. This took place 

for four hours around noon on July 17th 2018.  
 

Table 3: Air quality levels for NOx 

 Averaging  

period 

Pollution Regulation [8] Air quality criteria [9] 

NO2 

[μg/m³] 

15 min  300 

Hour 200, 18 times per year 100 

Year 40 40 
 

 

Figure 7: Daily average concentrations of NO at three measurement stations in Geiranger 2017-2018. 
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Figure 8: Daily average concentrations of NO2 at three measurement stations in Geiranger 2017-2018.  

The red line shows Air Quality Criteria levels.  

 

Further analysis of air quality 

From the initial inspection of PM and NOx pollution in Geiranger, some general observations are 

made: 

Firstly, for PM the primary contribution comes from PM1, as shown in Figure 3 and elaborated in 

[1]. In subsequent analysis and prediction of PM, we therefore focus on PM1. 

Secondly, the Geiranger and Fjord Centre measurement stations that have the highest concentrations 

of PM and NOx as well as the most frequent exceedances of the Air Quality Criteria for PM. The 

Geiranger station is furthermore the station with the most continuous data recordings as the other 

two stations have suffered from power outages and equipment failure for long time segments. In 

subsequent data analyses and prediction modeling, we will therefore focus on the Geiranger 

measurement station.  
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3.2. Temporal variability in data 

As seen in section 3.1., air pollution peaks are observed mainly during the tourist season (May – 

September). In order to further explore data variability over time, mean values for air quality and 

traffic data for each hour of the day in the tourist (May – September) and non-tourist season 

(October – April) are compared. Figure 9 shows concentration of particulate matter (PM) and 

nitrogen oxides (NOx) for the Geiranger measurement station. Note that time is defined in UTC 

(Coordinated Universal Time). For the tourist season, local time in Geiranger is UTC+2 hours.  

Tourist season  

(May – September) 

Non-tourist season  

(October – April) 
 

 
 

 

Figure 9: PMx and NOx pollution for tourist and non-tourist seasons. Mean values for time of day at UTC  
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As can be seen from figure 9, PM and NOx levels are far higher in the tourist season than outside 

the tourist season. In the tourist season, mean hourly PM1 levels begin to rise around 07.00 local 

time and peaks around 14.00. A similar pattern is seen for NOx, where the mean hourly air 

concentration rises from 07.00  and peaks at 12.00 for NO and around 16.00 for NO2.  

Another observation is that average hourly PM1 levels never reaches zero or even near-zero levels 

in the tourist season or during the rest of the year.  

The land- and sea traffic in the area also has a significantly higher volume during the tourist season 

compared to outside the tourist season as shown in Figure 10. The land traffic is measured as the 

number of cars passing the Grande measurement station in both directions, averaged on an hourly 

basis for the two seasons. For ship traffic, the total KW at different tier levels present in the area is 

summed and averaged on an hourly basis for the two seasons. The land- and sea traffic follow an 

almost identical pattern with a steady growth in volume measured as mean hourly volume from 

07.00 with a peak at around 13.00.  

The plots in Figure 9 and Figure 10 show that the trends for air quality and traffic volumes align. In 

the subsequent sections, we explore these relations in a more statistically rigorous manner. 
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Tourist season  

(May – September) 

Non-tourist season  

(October – April) 
 

 
 

 

Figure 10: Land and sea traffic volumes for tourist and non-tourist seasons. Mean values for time of day.  
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Tourist season  

(May – September) 

Non-tourist season  

(October – April) 
 

 
 

 

Figure 11: Temperature and wind speed for tourist and non-tourist seasons. Mean values for time of day.  
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3.3. Correlation analysis 

To obtain a more precise measure of the relationship between air quality, traffic and meteorological 

conditions, we use the Pearson correlation coefficient (Pearson’s r). This measure allows to 

determine the linear relationship between two variables. A perfect linear positive relationship gives 

a coefficient of 1, while perfect negative relationship gives a coefficient of -1. A correlation 

coefficient of 0 means that there is no linear relationship between the two variables, i.e. they are 

uncorrelated. Appendix I elaborates on the computation of Pearson correlation coefficient.  

Figure 12 shows correlation for hourly measurements of pollution variables to traffic and 

meteorological variables during the tourist season data (May – September). The plot has three 

sections where sea traffic variables are grouped to the left, followed by road traffic variables in the 

middle and meteorological variables to the right. As is clear from the plot, correlations to NO and 

NO2 are overall stronger for all variables than correlations to PM1. All bars show correlation 

coefficients significant at 0.01 level. 

For sea traffic variables, total gross tonnage (GT tot) and total passenger capacity for all ships at 

berth in the port of Geiranger (PAX tot) as well as number of cruise ships (Cruise) shows a moderate 

correlation to NO and NO2. Road traffic also moderately correlates to NO and NO2. The tier level 

data for cruise, ferry and hurtigruten is recorded as the total installed main and auxiliary engine 

capacity for these vessels when at berth in the port of Geiranger. Correlations for these variables are 

weak compared to the abovementioned sea traffic variables. For road traffic, results show that data 

from the Flydalen and Grande traffic registration stations correlate more strongly than data from 

Utsikten registration station. Both sea- and land traffic variables compare in strength of correlation 

to NO and NO2, with positive coefficients in the interval 0.4 to 0.5.  

For meteorological variables, the first observation is that variables correlate most strongly to NO2 

overall. Temperature and radiation are positively correlated to NO2 while relative humidity has a 

negative correlation to NO2. The same can be said for NO, with the exception that NO has no 

significant correlation to relative humidity. Correlation between PM1 and meteorological conditions 

are weaker than for NO and NO2.  

Pairwise correlations do not allow to distinguish causality, i.e. that one variable causes the other. 

This makes it difficult to determine what the unique contribution of meteorological and transport 

variables to air quality levels. As shown in Figure 11, both temperature and wind cycles align well 

with both traffic, as shown in Figure 10, and air quality levels, as shown in Figure 9. They are still 

useful to identify variables of interest for further analysis and setting up prediction experiments, as 

described in chapter 3.4.  
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Figure 12: Correlation values for NO, NO2 and PM to traffic and meteorological conditions during the tourist season, significant at 0.01-level 
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3.4. Predictions of air quality in Geiranger 

The primary objective of the pilot study is to explore the possibility of predicting air quality levels 

in Geiranger using information about traffic and meteorological conditions. Prediction models may 

be used to evaluate air quality given future scenarios and implementation of improvement measures 

if predictions reach a high level of accuracy. An important feature of prediction models is to evaluate 

whether predefined air quality levels are exceeded, such as e.g. Pollution Regulation or Air Quality 

Criteria levels. In this chapter, we present the results from prediction modeling experiments using 

machine learning tools. More information about methods and set up of experiments is described in 

Appendix I.  

In our prediction model experiments, a machine learning algorithm is applied to build a 

mathematical air quality prediction model. The procedure consists of a training and a testing step. 

In the training step, the algorithm is provided with information about measured air quality levels as 

well as traffic and meteorological variables for a subset of all the data to build the prediction model. 

The algorithm is not given information about date, time and weekday in order to avoid predictions 

based on these temporal variables at the account of traffic and meteorological conditions. In the 

testing step, the developed prediction model is applied to the remaining data, where air quality levels 

are predicted based on information about traffic and meteorological conditions. The predicted value 

is compared to the measured value to evaluate the performance of the prediction model.  

Experiment 1: Predicting air quality based on traffic and meteorological conditions 

Figure 13 shows the best results for predicting PM1 levels at the Geiranger measurement station. 

The blue line shows measured values while the orange line shows predicted values. As the plot 

shows, the trend for PM1 levels during tourist months is captured by the model, but it does not 

perform well in predicting peak PM1 levels. Another observation is that PM1 levels for the non-

tourist season is not predicted at any level of precision. This is expected as PM1 levels outside the 

tourist season is significant but may not be attributed to traffic.  

 

Figure 13: Measured and predicted values of PM1 at the Geiranger station 2015-2018 
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Figure 14 shows the best results for predicting NO levels at the Geiranger measurement station. As 

this data was collected from June 2017 onwards, there is no measured data for the previous years. 

The prediction model is still applied to this data as well. The plot shows that the prediction model 

only captures the trend and does not capture the peaks of NO concentrations.   

 

Figure 14: Measured and predicted values of NO at the Geiranger station 2017-2018 

Figure 15 shows the best results for predicting NO2 levels at the Geiranger measurement station. As 

is the case with NO, data is only measured from June 2017 but the model is still applied to data back 

to 2015. In this case, the model captures the trend and is closer to predicting the peaks than for PM1 

and NO.  

 

Figure 15: Measured and predicted values of NO2 at the Geiranger station 2017-2018 
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Experiment 2: Predicting air quality with masked variables 

In this experiment, the training and testing step of prediction modeling is performed without 

information about either meteorological conditions or traffic conditions. This helps to see how the 

original model compare in accuracy and help determine the importance of these conditions in 

making predictions. Prediction plots from all experiments are provided in Appendix II. 

In order to evaluate model accuracy, we use the mean squared error (MSE). The lower MSE, the 

better fit the prediction has to the measured data. It is important to note that the MSE evaluation is 

only indicative as it varies between runs, i.e. the same experiment may yield slightly different MSE 

when run several times. Figure 16 shows MSE when predicting various pollutants and masking 

subsets of variables. As the plot shows, the lowest MSE for prediction of all pollutants is obtained 

when all traffic and meteorological variables are included (Full model). When meteorological 

variables are excluded from the analysis (Weather masked), MSE increases significantly 

irrespective of which pollutant is predicted. This means that prediction accuracy for pollutants 

decreases the most when meteorological variables are excluded.  

For exclusion of both land- and sea traffic variables (All traffic masked) simultaneously, the MSE 

also increases compared to a full model. This increase is most evident for NO predictions, while it 

is considered small for PM1 predictions. It is worth noting that for NO2 and PM1, excluding 

meteorological variables (Weather masked) gives a lower prediction accuracy (higher MSE) than 

excluding all information about traffic conditions (All traffic masked).   

Finally, excluding either road traffic (Road traffic masked) or sea traffic (Sea traffic masked) does 

not seem to strongly affect MSE significantly when compared to a full model. In fact, a model with 

only road traffic and meteorological data might suffice in predicting the dataset used for predictions. 

As seen in section 3.2., road and sea traffic shows a temporal alignment during the tourist season, 

which could both be due of daily visitor cycles and that sea traffic generates some road traffic. This 

might be problematic if the prediction model is to evaluate a future scenario where for instance sea 

or road traffic is tuned, e.g. removed or altered in a significant manner.  

 

Figure 16: Mean squared error from prediction experiments for air quality at Geiranger measurement station 



 

 

20 

4. Conclusions and further work 

This report summarizes findings from initial analyses of air quality, traffic and meteorological data 

for the Geiranger area in the period 2015-2018. A combination of conventional statistics and 

machine learning has been applied to better explore relationships between these conditions in 

Geiranger.  

From initial observations of data, we see that air quality, traffic and meteorological conditions in 

Geiranger follows aligned temporal cycles over the course of a day during the tourist season (May 

– September). Outside the tourist season, these relationships are weaker, particularly for PM1. The 

covariance during tourist season makes it difficult to separate the different contributions to air 

pollution from land- and sea traffic as well as determine the mediating role of weather. 

From the prediction models developed in the project, we may conclude that:  

1. Prediction models follow the trends of air pollution levels but do not predict the magnitude 

of concentrations peaks. 

All models underestimated the peak concentration levels for all pollutants studied. The model 

seemed to be far better at predicting NO2 peaks than NO peaks. For PM1, the model identified 

elevated levels, but did not peak close to the measured data it attempted to predict.  

2. NO2 is more accurately predicted than PM1. 

NO2 is predicted at the highest level of accuracy among the pollutants included in the study followed 

by NO and PM1. PM1 concentration levels vary on a much finer scale and less instantly when traffic 

loads change compared to NO and NO2, which could explain the low prediction accuracy. PM1 also 

seems to accumulate over time in Geiranger, which means that measurements do not only include 

recent emissions but also emissions from earlier transport activity. Outside the tourist season, PM1 

levels sustain while traffic activity is significantly reduced. This could both be because of other 

emission sources as well as accumulation.   

3. Meteorological conditions increase accuracy in prediction models.  

We have not determined whether (or to what extent) this is in fact due to an important mediating 

role, or because weather contains information about season and time of day, or both. Among the 

meteorological parameters, radiation and temperature have a positive correlation to PM1, NO and 

NO2 during the tourist season, i.e. higher temperatures and more radiation are observed along with 

higher pollution levels. Wind speed has a negative correlation to PM1 and NO. Precipitation does 

not seem to strongly correlate with pollution levels in Geiranger. 

4. It is not possible to attribute air quality levels to land- or sea traffic activity with the current 

prediction models 

This could be because there is a strong covariance of road and sea traffic in our dataset. Sea traffic 

also generates some road traffic, so road traffic contains information about sea traffic activity levels. 

This reduces the usability of our prediction models if they are to be used for future scenario 

explorations.  
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The objective of this pilot was to generate initial familiarity with the relationship between air quality, 

traffic and meteorological conditions in Geiranger and to predict air quality using machine learning 

tools. Although our results show that predictions are possible, a more elaborate development and 

analysis of data would help determine these relationships in a more precise manner.  

In order to increase accuracies in prediction models to better capture peak concentration of 

pollutants, more data could be included in the analysis and models should be further improved.  

The Geiranger Air Quality Monitoring Program is currently piloting new technology to conduct 

measurements at a higher resolution. This could potentially help understand the pollution dynamics 

of the finer fractions of PM far better than our current data permits. As PM does not strongly 

correlate to our traffic and meteorological variables, nor is predicted accurately, it is useful to see 

its spatial distribution in the area in a more precise manner. 

Information about both road- and sea-traffic could also be characterized more elaborately, especially 

road traffic data should be explored at a higher resolution than in this pilot project. A potential issue 

to be addressed is that daily variations of mean road- and sea-traffic align quite well, which makes 

it difficult to attribute their separate activity levels to air quality. Future efforts towards this end 

would improve the usability of prediction models as it would enable to explore scenarios that are 

fundamentally different from observations in our dataset, e.g. scaling volume for road- and/or sea 

traffic, air abatement technology installations in ships and vehicles etc.  

Additional extensions of this pilot also involve including other variables of interest. Both SOx and 

noise data could be included in future modeling and analysis as they may have adverse effects on 

environmental quality, human health and the general well-being of visitors and residents in the area. 

This data is already collected and should easily be added to the existing project database.  

Additional data that could be subject to analysis in conjunction with the existing database are socio-

economic information about visitors to the area. The SUSTRANS project conducted visitor surveys 

during July 2018, mapping visitor behavior, preferences, spending and satisfaction. This 

information, along with demographic variables, visitor volume etc., could also be interesting to 

explore using machine learning tools to see, if and how they are linked to traffic, weather and air 

quality conditions. Data from additional sources could also be interesting in this regard, e.g. by 

video footage and telephone data to determine crowding levels.  

Air quality monitoring was initiated in Flåm 2019, a cruise destination in Aurlandsfjorden with 

several properties similar to Geiranger. Pooling this data with the Geiranger Air Quality Monitoring 

Program could be useful to learn more about pollution dynamics in these types of areas.  

Finally, the translation of analytical results to operable action is necessary. The developed prediction 

models may be used to support decision making in Stranda Hamnevesen and other transportation 

authorities to see potential consequences of alternative courses of action. As part of this pilot, a 

visualization for the Geiranger area based on the project database is underway. The visualization 

tool could be further developed in a more interactive manner to allow to alter conditions and 

simulate implementation of measures in transportation planning.  

Although this pilot has investigated relationships between air quality, traffic and meteorological 

conditions in Geiranger, several extensions are possible both in the short- and long-term. A main 

project following the results of this pilot should be developed to further explore how Geiranger can 

further develop as a smart, safe and sustainable fjord.  
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APPENDIX I: Method descriptions 

 

Data processing 

Merging datasets 

All data sources were joined into a single multivariate time series. The timestamps of the datasets 

are used to align them into one complete dataset. For the air quality and meteorological data, the 

timestamp is consistently UTC+1, while all other datasets were initially stored with UTC+1 (winter 

time) and UTC+2 (summer time) adjustments. All the data was converted to consistently follow a 

UTC+0 timestamp.  

Handling missing data 

For the air quality and meteorological data sets, some data is missing due to power outage, 

equipment failure and equipment upgrades during the sampling period. Some variables have long 

segments of missing data, and even though some of the variables are on and off in a synchronized 

manner, valuable data would have been lost if one chose to throw away all entries that have data 

missing. Instead, several source group presence indicators were added to the dataset, to serve as 

explicit input to the prediction models. Source group presence is 1 if the associated group of 

variables are present and 0 if they are not. 

No data “cleansing” was done. 

Standardization 

In Machine Learning, it is a recommended practice to have inputs of similar scale. Also, since the 

experiments involve predicting multiple variables, the outputs need to be of similar scale, so that 

the errors of some variables do not dominate those of others. To achieve this, the dataset was 

standardized, meaning the entries in each field was shifted against the mean and divided by the 

standard deviation. Missing data were then replaced by zeros, which correspond only to relatively 

harmless average values in case the source group presence variables are not used by the active 

model. 

 

Correlation analysis 

The purposes of the correlation analysis is to understand potential statistical relations between 

influential factors, like e.g. weather conditions, to the air quality data. For this purpose, the so-called 

Pearson correlation coefficient was analyzed for pairs of variables in the data sets. The coefficient 

value is in the range -1 to +1 and indicates how strongly two variables are linearly related to each 

other. A value of 0 indicates that there is no linear relation between the two variables, while a value 

of +1 or -1 indicates that the two variables are perfectly linear or inversely linear respectively. The 

Pearson’s correlation coefficient for variables X and Y is obtained from  

𝑟𝑋𝑌 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1
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where 𝑛 is the sample size, 𝑋𝑖 and 𝑌𝑖 are sample points, and 𝑋̅ and 𝑌̅ are sample means for the 

respective variables.  

In order to evaluate whether correlations are statistically significant, i.e. not due to random 

variations, we use 𝛼=0.01 adjusted using a Bonferroni correction. The correction compensates for 

the increase in likelihood of rejecting a null-hypothesis when testing multiple hypotheses. As we 

correlate 567 pairs of variables in our correlation analysis, the adjusted significance level becomes 

𝛼 =
0.01

567
= 1.76 ∗ 10−5 

                        

Prediction modeling 

A valid definition of artificial intelligence (AI) is the effort to automate intellectual tasks normally 

performed by humans. This has been the main goal for researchers and data-analysts within the AI 

field all the way back since the 1950s. In the past, AI developments were limited by the lack of 

computational power. However, this has changed drastically in recent years.    

Today, machine learning (ML) is an extremely active sub-field of AI. The core idea of ML is that 

humans input data and expected answers to an algorithm, which the algorithm will train on for 

several iterations. After the training procedure, the algorithm is able to produce original answers in 

a real-life system, for example, predictions of PM values in Geiranger. 

The data collected from Geiranger is time series data. In other words, the sensor measurements 

change during time. The Long-short term memory (LSTM) is considered the state-of-the-art ML 

technique for time series data since it is able to remember relevant time information from the past 

before making new predictions. This procedure is performed by utilizing a memory cell which is 

controlled by three gating units; the forget gate, the input gate, and the output gate. 

• The forget gate (𝑓𝑡) decides which past information is no longer relevant for the next 

prediction.  

• The input gate (𝑖𝑡) decides which new information the memory cell will input and store.  

• The output gate (𝑜𝑡) decides which information the LSTM will output to make the next 

prediction.  

Through these gates, the LSTM has the power to remove or add information in order to both learn 

past information and current information. This makes it extremely suitable to make predictions on 

time series data. The LSTM is illustrated in the Figure below. A simple explanation is that several 

LSTM-blocks will roll over each sensor measurement in the data set in the time direction. 𝑋𝑡−1 is 

the previous time step, 𝑋𝑡 is the current time step, and 𝑋𝑡+1 is the next time step. 
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Figure 1 - the long-short term memory 

 

Set-up for data prediction models in the pilot project 

To allow structured comparison of different models, a custom object-oriented model hierarchy and 

training setup was created for the project. This framework is configurable by simple modification 

of parameters. 

The model output can be of two types: 

1. Direct predictions of the target variables. (Used in the pilot study.) 

2. Parameters for a conditional probability distribution that target variables are assumed to be 

sampled from. (Experiments not completed yet.) 

The two types of models are both trained and evaluated differently. To reduce sensibility to extreme 

data values, the direct prediction models are trained on a robust pseudo-Huber loss. They are 

however evaluated on the mean squared error of standardized values. The distribution models are 

optimized to maximize the likelihood of the parameters with respect to the data, such that a 

reasonable distribution of the target variables follows from a given sequence of input variables. This 

means the distribution models incorporate a sense of confidence in their own prediction, in form of 

the probability density at the predicted values. This also provides a way to handle extreme data 

values. The evaluation of distribution models during cross-validation is based on the same 

likelihood objective, but for comparisons of predictive performance again the mean squared error is 

used. 

The model types that were considered for direct predictions were: Multilinear Regression, FNN, 

Recurrent Linear Model, LSTM 
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The model types that were considered for distribution output were: FNN and LSTM 

Short descriptions of models 

Multilinear regression is a baseline that contains and expands upon the power of linear correlation 

analysis, to predict the values of variables from linear relationships. 

Feedforward Neural Networks, or FNN, are the basic standard type of neural network. They work 

by alternating between affine transformations (like Multilinear regression) and nonlinear activation 

functions. FNNs are proven to be universal approximators of bounded functions in real numbers, 

capable of representing much more complex relations than linear regression models. The 

implementation used in experiments is a Self-normalizing Neural Network with alpha dropout. 

When using sequential input, it may be possible to exploit that the relationship between subsequent 

observations are similar. This motivates the usage of Recurrent Neural Networks, RNNs, for 

sequential analysis. RNNs have feedback connections that propagate information from earlier 

observations, called a “state”, and use the same parameters on each step in the time window. That 

means the parameters encode the same relation at each step. 

A very basic variant of RNN is a Discrete-Time Linear State-Space Model, wherein all 

transformations are linear (thus it may not qualify as a neural network, but it has the same flow as 

an RNN). I call the model DTLTI for Discrete-Time Linear Time-Invariant. The calculation of a 

DTLTI on an initial state and an input window of limited length in principle evaluates to a 

multilinear expression. However, the weight sharing between time steps allows it to generalize 

better on small datasets. 

A more advanced variant is the non-linear LSTM. It is a very successful type of RNN, which is 

capable of general computation on sequential inputAgain, when applied to a limited input the 

calculation could have been represented by a deep FNN (inputs on multiple layers and multiple 

activation functions in each layer), but during training, an FNN does not profit from a structure that 

generalizes over sequential transitions. The LSTM in these experiments is configured with peephole 

connections, skip connections, layer normalization and recurrent dropout. 

The distribution models try to fit a conditional Gaussian Mixture Model (reference needed) with 

parameters and mixture weights generated by the neural networks. 

Training 

All the models are trained using a variant of Gradient Descent, which means that the total loss 

function on a batch of input-output pairs is differentiated with respect to the (many) parameters, and 

a small parameter step is made in a direction that appears to make the loss smaller. This is repeated 

very many times. Eventually the loss will stop improving. 

A common problem is overfitting, which means the model learns to remember the training data 

rather than representing the underlying patterns. This is typically a problem when the dataset is 

modest in size. In a Machine Learning context, that can be said about our dataset. The most complex 

models tried in this study have millions of adjustable parameters in total, compared to less than three 

million numbers in the dataset, whereof only about half a million are pollution measurements, 

whereof only about 100 000 are in the set of highly prioritized variables. 
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A way to avoid overfitting is to keep models small, that is to have few adjustable parameters in 

them. This is one of the main advantages of the linear/affine models over the big LSTM and big 

FNN models. If a simple model can make useful predictions, it may in some cases be preferred over 

a complex one that may be biased toward the training data. 

Another measure against overfitting is to train with dropout, which means some layer outputs are 

purposefully “lost” during training, forcing the network to incorporate redundancy, and reducing its 

ability to exactly memorize the training data. 

Overfitting can be kept under control by splitting the dataset into one part for training and one part 

for validation. Keeping track of the loss on the validation set during training facilitates the simple 

technique of early stopping, which is stopping the training when the validation loss starts to increase 

again, ideally when at the global minimum, the deepest valley of the loss landscape. A variant of 

this method was used in the experiments. 

The problem with splitting the dataset, is that it throws away scarce and valuable data. Therefore, 

for this project, K-fold Cross-Validation was employed. It consists of making a number K 

complementary training-validation splits of the data, and judging the models based on the average 

validation loss. Moreover, in this project the CV was implemented as an ensemble model that 

combines the outputs of the constituent models, and the splitting was implemented as a masking of 

errors or outputs of each submodel, based on timestamps. This enabled the models to be trained 

together and validated together. 

A difficulty with splitting the dataset is that the source presence varies so much yet tend to be the 

same over hundreds of neighboring samples. A simple splitting where the submodels got ordered 

1/K slices of the dataset would thus make the models focus on very different variables. Instead a 

method of sharding was used, in which the samples were binned into time windows (shards) of 104 

hours, and shards were alternately assigned as validation data to each submodel. To avoid 

information leakage from training to validation, a quarantine equal to the input window length (9 

hours) was held out of each shard. 

The model that has generated predictions for the figures is a small (width=16, depth=2, 

parameters=13653) LSTM network trained to predict all 21 pollution variables. The rationale for 

using all pollution variables as targets, rather than only the prioritized ones, was two-fold: 1. This 

gives the model more information about the underlying system. 2. It further helps combatting 

overfitting to a selected subset. 

 

 

 

 

 

 

 

 



 

 

APPENDIX II: Plots from prediction experiments  
A: Masking meteorological variables 
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B: Masking road traffic variables 
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C: Masking sea traffic variables 

 

 

 



 

 

 

 

 

 


